The Lost Apprentice

Despite our words of concern for education and training, our workforce is racing toward the cliff of incompetence. Even though innovation and specialization have brought us marvelous new tools, basic skills are vanishing, collateral damage from a squeeze on labour. How? In a word, the apprentice has gone missing.

One company (BMW in South Carolina), experiencing first-hand the dearth of skilled labour, has set up an apprenticeship system. But there is resistance. After all, from skilled labour flows empowered labour and unions. From there a slippery slope leads to socialism and communism. Or so goes political thought.

Yes, we are on a slope, but the destination is not an 'ism'. It is incompetence.

My trade is flying airplanes, so I'll stick to what I know. But look around in your own trade or profession and you may see examples of what I'm talking about. Are you passing on your knowledge? Are there barriers to doing so? Will the young people taking up your mantle be able to learn from your mistakes and those of your teachers? Or will they repeat those mistakes? Will they master the new tools that arrive, it seems, every day? Or will they hide behind them, shirking responsibility simply because they are afraid, deep in their gut, that they can't do the job?

I was lucky. I joined the airline in the right seat of the DC-9 and learned fast. I flew with captains who took their teaching responsibilities seriously. I particularly remember Ike Jones, a great, generous, good-natured Newfoundlander. He was Master to my Apprentice. He taught me and I have never forgotten.

Learn By Doing

Lee Kang Kuk (the Asiana 214 Trainee Captain) was not so lucky. He was an “experienced” pilot, a captain on Airbus aircraft transitioning to the B-777. I put experienced in quotes because although he had thousands of hours of flying, he found the prospect of doing a visual approach “very stressful.” To me this seemed nonsensical until I began to think about it. I thought about the Asiana First Officer who told the investigation he had been flying the A320 for three years and had never landed the airplane manually.

I thought of myself. After retirement from the airline I didn't fly for 6½ years. I had to get training, pass exams and tests, and retrain myself. This year I have been working with Andrew Boyd, a Class I instructor, trying to get my skills up to where I can get my Class II instructor rating back. It has been a lot of joyful work. But I see even more than I did six months ago that we all learn by doing. Practice, practice, practice. Lee's airline recommends that its pilots fly their planes manually as little as possible.

Lee didn't have a chance. He said, “(it is) very difficult to perform a visual approach with a heavy airplane.” Horsefeathers. It is actually harder with a very light airplane. What is difficult (if not impossible) is to fly any maneuver without practice.

History Repeats Itself

Fifty years ago last month an Air Canada DC-8 crashed at Ste.Thérèse, Québec. Last month a Boeing 737 crashed at Kazan, Russia. The DC-8 hit the ground at 55° nose down. The B-737 hit the ground at 75° nose down.

It is unlikely that the young pilots in Russia knew of the DC-8 accident. After all, it happened before they were born. What possible relevance could it have for them?

Well, we know from the evidence so far that they were not prepared for the missed approach they tried to execute. They did make the decision to go around. They did select TOGA (Takeoff/Go Around) mode. The engines did spool up to takeoff thrust. They did retract flap from 30° to 15°.

Then comes the part that is difficult to explain. They disengaged the autopilot but did not fly the airplane.

On its own the B-737, trimmed for approach, will pitch nose-up with both takeoff power and flap retraction. The accident aircraft did just that, achieving 25° nose-up, about 10° higher than the target for this maneuver. Like the DC-8 fifty years before, it was accelerating, at least until it passed the 15° target attitude.

Instrument pilots know that acceleration can produce the sensation of pitching nose-up. That might explain the Ste. Thérèse accident. It surely played an important part at Kazan.

It would have helped if the Russian pilots had been trained to expect the missed approach. Pilots call it being spring-loaded for the Go-Around. It would have helped if they knew of and expected the illusions they were about to experience from the acceleration. But most important by far are the basics, and the foundation of any emergency, indeed of any maneuver, is fly the airplane. Somehow they omitted this crucial step.

How Did We Get Here?

It would be convenient if we could put the finger on one factor, one guilty party. But there are many: deregulation; lazy captains; automation; feeder airlines, merger, and bankruptcy as tools to reduce costs; regulatory impotence. Mark H. Goodrich explores all of these in depth on his website. His unique experience (engineer, pilot, teacher, lawyer, more airplane type ratings than anyone) give him an invaluable perspective. I will summarize from my own experience.

Lazy Captains

In my younger days there were captains who grumbled it was not their duty to teach flying. Their interpretation of the adage Learn, Earn, and Return stopped with the money.

Automation

I confess I am a technophile. I love new tools. Flying my Bonanza with its Aspen Primary Flight Display fed by the Garmin GTN650 is a delight. But there are changes. My instrument scan still covers the basic 'T', but there are new items in it, and the order is different. From the airplane symbol (attitude) my eye moves an inch to the right to see if there is any pink fuzz on the altitude tape (trend) and an inch and a half down to the aqua diamond (aircraft track). If there is no fuzz and the diamond is on the arrow (desired track), no further action is necessary for the moment. I can look further out, and think for a second or two about other issues.

And here, in front of the MacBook Pro, I can think about the wider implications. How I enjoyed teaching technology on the A320, and how much flying skill I lost in my nine years on the airplane. Yes, I would make sure each of us did an “everything off” visual approach at least once per cycle (trip, 2-4 day sequence of flights). But in the Airbus such an approach is a bit of a parlor trick, chiefly because there is no trim feel.

In the Bonanza I have the best of both worlds. There is no autopilot. You fly it every second you're airborne, and then some. And the tools I have at hand are better than I had on the Airbus. ForeFlight in my iPad, fed by a tiny GPS and a satellite weather receiver. New capability arrives every few months with a software change. Flying in IMC I no longer have to request permission to leave the ATC frequency, call the FSS, and copy weather with one hand while flying with the other. Instead, my right forefinger taps the iPad over the airport of interest, and the last METAR appears. Another tap brings the forecast or the winds aloft or the airport information. One more tap and the approach I have chosen is drawn over the map in scale. Using two fingers I zoom and pan as I brief for the approach. I am still flying with my left hand.

I love it all. But is it easier than the old way?

Yes and no. In the old days you started with heading and guessed at the track made good. You integrated (looked at change over time) the localizer or VOR needle to see how good your guess was. Now you just glance at the little diamond. That's a huge improvement. But you have to learn the system, to understand what is going on. The diamond is of no use whatever if you don't know what it is. And once you do you have to retrain your eye so it knows where to look. So I am solidly with Mark Goodrich when he says that automation requires more pilot training, not less.

Airline Management Strategies

Since deregulation (1978) airline management has focused on reducing costs. Robert Crandall (American Airlines) spoke out against deregulation, but once it was law he led the way, inventing one strategy after another for his airline's survival. The first of these was hub and spoke. As I young man I flew the DC-9 across Canada on many long, thin, multiple-stop routes. By the time I was captain on the same airplane (1987) hub and spoke had arrived and there were feeder airlines flying turboprops, bringing passengers from the smaller cities into the hubs where the jets flew. This not only made economic sense – it also provided the opportunity to set up a two-tier pay scale and reduce the power of the pilot unions. But there was a casualty: apprenticeship. Young pilots starting out at the feeder had no contact with the old guys (still mostly men, even then) nearing the end of their career. Instead, they flew with captains near their own age whose only concern was getting a job with the main line. Seniority and career trumped teaching and learning. The wisdom of the old farts retired with them.

Then, as Robert Crandall so accurately predicted (in the Senate hearings on Deregulation), the airlines started losing money. There was a frenzy of merger and acquisition, and then bankruptcy. Collateral damage to pilots came in training, salary, and pension.

When I joined the airline training on a new type included two hours at the controls of a real airplane, doing takeoffs and landings. Now a pilot's first landing on a new type is on a line flight with passengers. That can be interesting. I know because I spent my last eight years as a Line Indoctrination Training Captain. For more about reliance on simulators and airline training in general, see Mark Goodrich's Simulating Reality and The Training Paradox.

Regulatory Impotence

The FAA recently changed the regulations to require that First Officers on transport aircraft have 1500 hours total time and an Airline Transport Rating. This was largely a response to the Colgan Air crash at Buffalo, NY in February, 2009. There are not enough pilots with these qualifications, and airlines are beginning to cancel flights in the smaller markets such as Grand Forks, ND.

The FAA now requires some Asian airlines to fly GPS approaches instead of visual approaches if the ILS is unserviceable. Note that aircraft “land themselves” only if an ILS is available on the landing runway. Note also that GPS approaches with vertical guidance, although they allow an autopilot to fly the airplane down a glideslope, themselves require training.

So which is better? Apprenticeship, or regulations which say only masters can fly? Training pilots in the fundamentals so they have the confidence they can fly, or regulating the level of automation they must use?

Conclusion

We have come full circle. Laziness interacts with automation, cost cutting with simulator training, loss of apprenticeship with pilot confidence and competence. The emperor has no clothes. But again, why?

The answer, I'm afraid, is simple. We can't see that the emperor has no clothes because we don't want to look. Deregulation opened airline financial decisions to the market, which means you and I, the bargain-seeking traveler, push prices down to where flight operations can no longer be safely undertaken. It has taken a generation, but that is where we have arrived.

AF 447: Let’s Talk About Why – 2: Virtual Reality

How many times have you heard Airbus pilots say, “It's not an airplane, it's a video game.”?

In this blog I will explore the fact and fiction in this statement. My objective is not to praise a great airplane or run down a flawed one, but rather to find how to live with a perfectly good one.

For almost a decade I flew the A320 (and the A319 and A321) as Captain and Training Captain. I came to see her not as a video game but as a person with whom I had to deal. I came to appreciate her many sterling qualities and also her weaknesses. Both informed our work together.

Fundamentals

First, she is an airplane like any other. If you accelerate her to Vr and raise the nose, does she not fly? If you provoke her into an Angle of Attack above 16°, does she not stall? Do not the laws of aerodynamics still hold?

These fundamental things will always apply as we work through her many wonders: Fly-by-Wire, Envelope Protection, and Flight Guidance systems. These wonders are what software people call a “front end” to her conventional aircraft qualities. But the wonders can be a powerful distraction as well as a boon.

Another pilot comment heard (more frequently in the first decade of operation, roughly the 1990's) is “What the #*%# is it doing now?”. The question was being asked because the pilots didn't know where to look for the answer, and also because an airplane maneuvering on her own was a novelty. When things happen that we don't understand, we human beings tend to see them as acts of God. We substitute reverence for understanding. A320 software – partly because it is so good, most of the time – has been an object of such reverence.

But just as we are not perfect, neither is this marvellous software. As the history of the airplane in service demonstrates, it is only as good as its interface with the pilots.

The Crashes

The first three crashes – Mulhouse, Bangalore, and Strasbourg – are illustrative. In the first two the engines were at idle and the crew were unaware that the power was being commanded to idle by the Auto-thrust. This information is clearly presented at the left end of the Flight Mode Annunciator or FMA, which appears in a band across the top of the Primary Flight Display, or PFD. The Auto-thrust Mode is what the Auto-thrust thinks it is doing. The only acceptable modes for approach are Speed and Off. At Mulhouse and Bangalore the Auto-thrust Mode was reading Idle.

What was not clearly understood at the time of these crashes was how to change the Auto-thrust mode from Idle to Speed, which is to turn off both Flight Directors. Further, the annunciation of the Flight Director modes on the FMA was not as communicative as it is today. At Bangalore one pilot turned off his Flight Director and the other did not. As a result the Auto-thrust mode remained in Idle. Today in that situation the FMA would show 1FD- , meaning that FD 1 is operating on the left side and that FD2, on the right side, is off. (With both FD’s on the FMA would show 1FD2). Both pilots can see what is going on. This improvement was implemented after analysis of these crashes.

The Strasbourg crash resulted in another improvement in the airplane-pilot interface. The flight was performing a non-precision approach which specified a Flight Path Angle. The crew selected -3.3 into the Flight Control Unit but failed to switch it to Track/Flight Path Angle mode. The FCU remained in Heading/Vertical Speed mode and interpreted the command as -3300 feet per minute. (There is a big difference between the two. At normal approach speeds a Flight Path Angle of -3.3 would be 800-900 fpm.) The presentation has since been changed in two important ways: first, to change the HDG/VS mode on the FCU to show 3300 while leaving the TRK/FPA mode as 3.3. Second, the commanded rates are now repeated on the Flight Mode Annunciator.

In these accidents the crew were not aware of what the software was doing. In the following example, the loss of an A330 in flight test at Toulouse in 1994, the crew were not aware of a crucial software limitation.

In most autopilots there is an altitude capture mode. In Airbus aircraft this is known as ALT*, or “Alt Star.” The computer uses the selected altitude and the vertical speed to calculate how far ahead to begin the capture maneuver, which is an asymptotic curve. Higher vertical speeds require that the maneuver be begun earlier if “G” forces are to remain within limits. Crucially, because the software calculates the curve based vertical speed, it de facto assumes that the thrust available at the start of the capture maneuver will remain available. Thus the loss of an engine while in ALT* is a first-rate emergency requiring flight crew intervention within a few seconds.

Man/Machine Communication

I present these examples not as an exhaustive course on Airbus software, but as an illustration of how extra intelligence brings with it extra complication. First, the communication between man and machine is of paramount importance. The interface cannot be too well-designed and the pilot cannot take too much care in maintaining effective two-way communication. This is why at my airline any change in the FMA was verbalized by the Pilot Flying, in effect giving voice to the machine and keeping the three pilots (two human, one cybernetic) on the same page.

Second, each time a task is assigned to automation the process must remain transparent to the pilot. He must understand in general terms what the computers are doing, and even more importantly what they are not doing. Should the automation for any reason drop the task it must be immediately obvious to the pilot and he must have steps rehearsed which let him take control and do the task himself.

Engine failure in ALT* is a good example. With today's improved FCU interface the pilot can push the Vertical Speed knob, which simultaneously selects V/S as the vertical mode and sets the target V/S to zero. In less than a second he has intervened, taken control, and given himself time.

If altitude cannot be maintained on the remaining engine(s) he can twist the knob to set a modest descent. Then the drill calls for getting a clearance to a lower altitude, turning off the Auto-thrust and setting Maximum Continuous Thrust on the good engine(s), selecting the cleared altitude and Pulling the Altitude knob to select Open Descent. Speed and thrust can then be adjusted to suit the situation.

The above procedure is not difficult, is easily performed in the time available before losing control, and requires no particular skill. What it does require of the pilot is that he view the airplane (and her wonders of automation) as an equal: a skilled pilot who nevertheless can have a bad day, make a mistake, or be simply unavailable.

Anthropomorphism

I know I am not alone in assigning a personality to the Airbus. I have said elsewhere that I came to regard her as a friend, or more than a friend. I (ahem) even loved her. Perhaps I still do and that why I am writing this.

Wait, though. I know full well she is aluminum, carbon fibre, and Intel and Motorola Assembler. I also know she is a damn good pilot and that she can be trusted like a close friend. But – and this is the important part – she is my equal. I can fly too, but I sometimes make mistakes, have a bad day, or fail to communicate effectively. Ditto my software friend. I can be blinded by pride. Ditto my software friend. She is French and she has pride in her DNA.

In the Simulator we practice Pilot Incapacitation, recognizing that to err is human. What we have a harder time with is Automation Incapacitation. This is perhaps a symptom of our reverence for something that is beyond our understanding, for our unrecognized assumption that technology is perfect, or at least better than we are. This unrecognized and unwarranted assumption can be fatal.

It is much better to appreciate her as an equal and deal with her as a whole person, warts and all.

Feedback and Feel

Let's dig a step further. I believe what pilots are talking about, when they say Airbus aircraft are video games, is the lack of feedback and feel in the controls. The throttles, for example, do not move when the Auto-thrust is active. The pilot sees only Speed on the FMA and the engine indications on the ECAM. To take control smoothly (for example to do a manual approach) he must pull the thrust levers back until the little green donuts match the current thrust, and click the off button on the lever. The FMA says Off and he's on his own. But the approach is still a bit of a parlor trick because there is no feel in the sidestick. When a conventional aircraft gets slow increasing back pressure is necessary to keep the nose from dropping. Not so in an Airbus. Instead, the Autotrim will move the stabilizer nose-up to maintain 1G flight. The pilot's eye has to dart to the airspeed indicator to get what he might have sensed in the stick or control column. All of this contributes to the “video game” feel.

Perhaps a direct Angle of Attack readout in a Heads Up Display would compensate for the lack of feel. But this is ignoring an essential fact: the Airbus is a conventional airframe, with positive aerodynamic longitudinal stability. It is not like some fighter aircraft with neutral or negative longitudinal stability, where the aircraft is uncontrollable without fly-by-wire. The stability is there, but it is shielded from the pilot.

It must be pointed out that the Airbus is a beautiful airplane and a joy to fly and that it has hundreds of wonderful design features I would not like to see disappear. Just one example is “the hook” (the display on the airspeed tape of Vls (lowest selectable speed)) and its relationship to “the bug” (Vapp, or final approach speed). The bug speed is calculated by the FMCG (Flight Management and Guidance Computer) based on the Gross Weight (or Zero Fuel Weight) entered by the pilots. The hook is calculated from first principles by comparing Angle of Attack with dynamic pressure (airspeed). In a normal approach these are 0.5 cm (1/4 inch) apart. This is one of those comfort crosschecks for pilots. If the bug and the hook are too close together, the weight entered in the FMCD is likely wrong, and the calculated Vapp is too slow.

But even here an intelligence has been interposed between the pilot and his aircraft. Why not also display the Angle of Attack directly, and always fly the approach at the same angle of attack regardless of weight? (See my blog AF 447 – Let's Talk about Why – 1: Angle of Attack). It is this interposition of intelligence that contributes to what I see as the problem: the illusion of Virtual Reality.

Virtual Reality

Flying an airplane, any airplane, is a very real job. The airplane can be a bear or sweet to fly, it can be automated or not, it can “land itself.” But the bottom line of the captain's job does not change, and that is to be the arbiter of last resort: the man or woman who imagines, constructs, and sees the picture that determines the outcome. It is his or her job to maintain that picture. In the trade we call it situational awareness. If something goes wrong and that picture is wrong people die. And if the captain believes the glass display before him is superior to his own mental image, then he will be more likely to abdicate his responsibility to maintain situational awareness.

Today's glass cockpit is seductive. A wealth of information sits before the pilot: some of it is raw data; often it has been extensively processed into a colourful and sometimes beautiful picture. Like a video game, this is virtual reality. Software is doing the imagining for the pilot.

It can be argued that the picture in the pilot's head is also virtual reality, merely a representation of the external world. But this argument does not acknowledge the survival instinct that guides the pilot's doubt and questioning, his constant checking for consistency, his testing of the obvious.

Airbus aircraft are beautiful and a joy to fly. But they are not perfect. Like all of us, they have a fatal flaw. The Ancient Greeks knew this hamartia as an essential component of human character. Bernard Ziegler, the brilliant designer of the Airbus software, has been quoted as saying he wanted to make the airplane pilot-proof. Consequentially, as I have shown, there are areas where the pilots have been shielded from useful, even essential, information. The Airbus pilot must work hard to ensure he is not entirely removed from the loop.

Reality for an airline passenger is not virtual. This game cannot be started over. The next time you hear someone say, this airplane lands itself, will you be comforted? Or will you be hoping that the pilots are not just along for the ride?